






# Course: Risk Based Strategies for Inspection & Maintenance (RBI & RBM)

|                  | City               | hotel              | Start      | End        | price | Hours |
|------------------|--------------------|--------------------|------------|------------|-------|-------|
| <sup>540</sup> ( | Munich<br>Germany) | Hotel Meeting Room | 2024-12-02 | 2024-12-06 | 5950€ | 25    |

Risk Based Inspection (RBI) methodology enables the assessment of the likelihood and potential consequences of pressure equipment failures. RBI provides companies the opportunity to prioritize their equipment for inspection; optimize inspection methods, frequencies and resources; develop specific equipment inspection plans; and enable the implementation of Reliability Centered Maintenance. This results in improved safety, lower failure risks, fewer forced shutdowns, and reduced operational costs.

#### • The risk-based approach needs:

- To be multi-disciplined
- $\circ\,$  To be realistically applicable to plant integrity
- $\circ~$  Design with future scenarios in mind
- Consideration of all potential degradation mechanisms
- $\circ~$  Understanding of the risks involved
- $\circ\,$  Awareness of Fitness for Service assessment techniques

## **OBJECTIVES**

- To provide clear understanding of the key aspects of Risk Based Inspection, its advantages and limitations
- To provide a clear understanding of how it is linked to reliability-centered maintenance
- Understand how fitness-for-service assessment affects the Risk
- To show you how to develop a successful RBI program at your facility
- Provide you with the practical and effective methods you need to perform practical likelihood and consequence analysis
- Show you how to develop optimum Inspection intervals for individual equipment based on the assessment of the active degradation mechanisms

## **ORGANISATIONAL IMPACT**

- Identification and assessment of active degradation mechanisms
- Implementation of a Risk Based Inspection program would result in significant measurable improvements improved plant integrity
- Fewer failures



- Optimization of inspection and maintenance plans and resources
- Reduction in operating costs

## PERSONAL IMPACT

- Delegates will acquire the knowledge necessary to apply the risk-based methodology
- Delegates will acquire the skills necessary to apply the risk-based methodology
- Enhance competence in RBI
- Enhance performance level
- Contribute additional value to the organization

### WHO SHOULD ATTEND?

- Operations Engineers
- Maintenance Engineers
- Engineering Managers and Supervisors
- Technical Staff with responsibilities for inspection, maintenance, assessment and mitigation of plant equipment degradation, and who want to use RBI effectively in their plants

### outline

- Significance of Inspection in Plant Integrity and Maintenance Costs
  - $\circ$  The Real Function of Inspection
  - $\circ\,$  Inspection Key Performance Indicators
- Common Inspection Strategies and Their Limitations
- Risk-Based Decision-Making Fundamentals and Tools
  - $\circ~\mbox{Risk}$  Assessment Probability of failure, consequences of failure
  - Risk Management Avoidance, Mitigation
  - $\circ$  Risk Communication
- Understanding and Managing Risk
  - $\circ~$  Principles Risk Assessment
  - Risk Assessment Elements
  - $\circ\,$  Qualitative, Semi-quantitative, and Quantitative Assessment
- Workshop 1- Illustrative Example of Risk Assessment
- Risk Based Inspection (RBI)
  - Definitions
    - $\circ$  Evolution
    - Key Elements of RBI
    - $\circ\,$  Reasons for implementing RBI
      - Benefits and Limitations of using RBI
      - RBI as a part of plant integrity management
      - Economic Benefits



- API Risk-Based Inspection Methodology
  - API RP 580
  - $\circ\,$  API BRD 581 Various levels of RBI Analyses
- Impact of RBI on Related API Codes, Standards, and Recommended Practices
  - API 510, 570 and 650
  - $\circ~$  API 579 Fitness-For-Purpose
- API Risk Based Inspection Software
- Workshop 2 Q&A on API RBI Methodology
- Overview of API 571 Recognition of Conditions Causing Deterioration of Failure
- Overview of over 60 damage mechanisms found in refineries
- Detailed discussion of some common damage mechanisms: Internal and external corrosion, brittle fracture, fatigue, SCC, HIC, internal and external corrosion
- Identification of Deterioration Mechanisms & Failure Modes
  - $\circ\,$  Active damage mechanisms in critical plant equipment
  - $\circ~$  Inactive or "unlikely" mechanisms
  - $\circ~$  Identification for assessment
  - $\circ~\mbox{Impact}$  of simultaneous mechanisms
- Selection of Suitable Materials for Specific Deterioration Mechanisms
- Integrated Asset Management
  - $\circ~$  Linking Risk Assessment, RBI, and RCM
  - Managing Risk Using RBI
- Workshop 3 Case studies involving a number of equipment damage and failures, and learnings
- Development of Inspection Plan (Based on RBI Risk Ranking)
  - Inspection Planning Guidance
  - $\circ~$  Need for Some Speculative / Exploratory Inspection
  - RBI Implementation
    - Essentials for Establishing a Successful RBI Program
    - The RBI Team Recommended Structure and Mandate
  - $\circ~$  Developing Equipment and Piping Systems / Circuits Inventory
  - $\circ\,$  Inspection History, Interpretation
    - Equipment Criticality Rating
  - Equipment Data Base
    - Shared Database by RBI and RCM
    - Importance of Data Quality
    - Computerized Maintenance Management Systems
  - $\,\circ\,$  Workshop 4 Case Study: Risk-based categorization of equipment and failure modes
  - $\circ\,$  Inspection Interval Optimization Based on Assessed Risk
  - Evaluation of Inspection Results
    - Data Quality
    - Corrosion Rate Calculations
    - Remaining Life Calculations
  - Fitness-For-Service Assessments
  - $\circ~$  Estimation of Consequences of Failures



 $\circ~$  Workshop 5 - Case Study - Assessment of defects in critical equipment



The Scandinavian Academy employs modern methods in training and skills development, enhancing the efficiency of human resource development. We follow these practices:

- Theoretical Lectures:
  - We deliver knowledge through advanced presentations such as PowerPoint and visual materials, including videos and short films.
- Scientific Assessment:
  - $\circ\,$  We evaluate trainees skills before and after the course to ensure their progress.
- Brainstorming and Interaction:
  - We encourage active participation through brainstorming sessions and applying concepts through role play.
- Practical Cases:
  - $\circ\,$  We provide practical cases that align with the scientific content and the participants specific needs.
- Examinations:
  - $\circ\,$  Tests are conducted at the end of the program to assess knowledge retention.
- Educational Materials:
  - $\circ\,$  We provide both printed and digital scientific and practical materials to participants.
- Attendance and Final Result Reports:
  - $\circ\,$  We prepare detailed attendance reports for participants and offer a comprehensive program evaluation.
- Professionals and Experts:
  - $\circ\,$  The programs scientific content is prepared by the best professors and trainers in various fields.
- Professional Completion Certificate:
  - $\circ\,$  Participants receive a professional completion certificate issued by the Scandinavian Academy for
    - Training and Development in the Kingdom of Sweden, with the option for international authentication.
- Program Timings:
  - Training programs are held from 10:00 AM to 2:00 PM and include buffet sessions for light meals during lectures.